Open CASCADE Technology  6.9.1
Public Member Functions
Geom_OffsetSurface Class Reference

Describes an offset surface in 3D space. An offset surface is defined by: More...

#include <Geom_OffsetSurface.hxx>

Inheritance diagram for Geom_OffsetSurface:
Inheritance graph
[legend]

Public Member Functions

 Geom_OffsetSurface (const Handle< Geom_Surface > &S, const Standard_Real Offset, const Standard_Boolean isNotCheckC0=Standard_False)
 Constructs a surface offset from the basis surface S, where Offset is the distance between the offset surface and the basis surface at any point. A point on the offset surface is built by measuring the offset value along a normal vector at a point on S. This normal vector is given by the cross product D1u^D1v, where D1u and D1v are the vectors tangential to the basis surface in the u and v parametric directions at this point. The side of S on which the offset value is measured is indicated by this normal vector if Offset is positive, or is the inverse sense if Offset is negative. If isNotCheckC0 = TRUE checking if basis surface has C0-continuity is not made. Warnings : More...
 
void SetBasisSurface (const Handle< Geom_Surface > &S, const Standard_Boolean isNotCheckC0=Standard_False)
 Raised if S is not at least C1. Warnings : No check is done to verify that a unique normal direction is defined at any point of the basis surface S. If isNotCheckC0 = TRUE checking if basis surface has C0-continuity is not made. Exceptions Standard_ConstructionError if the surface S is not at least "C1" continuous. More...
 
void SetOffsetValue (const Standard_Real D)
 Changes this offset surface by assigning D as the offset value. More...
 
Standard_Real Offset () const
 Returns the offset value of this offset surface. More...
 
Handle< Geom_SurfaceBasisSurface () const
 Returns the basis surface of this offset surface. Note: The basis surface can be an offset surface. More...
 
void UReverse ()
 Changes the orientation of this offset surface in the u parametric direction. The bounds of the surface are not changed but the given parametric direction is reversed. More...
 
Standard_Real UReversedParameter (const Standard_Real U) const
 Computes the u parameter on the modified surface, produced by reversing the u parametric direction of this offset surface, for any point of u parameter U on this offset surface. More...
 
void VReverse ()
 Changes the orientation of this offset surface in the v parametric direction. The bounds of the surface are not changed but the given parametric direction is reversed. More...
 
Standard_Real VReversedParameter (const Standard_Real V) const
 Computes the v parameter on the modified surface, produced by reversing the or v parametric direction of this offset surface, for any point of v parameter V on this offset surface. More...
 
void Bounds (Standard_Real &U1, Standard_Real &U2, Standard_Real &V1, Standard_Real &V2) const
 Returns the parametric bounds U1, U2, V1 and V2 of this offset surface. If the surface is infinite, this function can return: More...
 
GeomAbs_Shape Continuity () const
 This method returns the continuity of the basis surface - 1. Continuity of the Offset surface : C0 : only geometric continuity, C1 : continuity of the first derivative all along the Surface, C2 : continuity of the second derivative all along the Surface, C3 : continuity of the third derivative all along the Surface, CN : the order of continuity is infinite. Example : If the basis surface is C2 in the V direction and C3 in the U direction Shape = C1. Warnings : If the basis surface has a unique normal direction defined at any point this method gives the continuity of the offset surface otherwise the effective continuity can be lower than the continuity of the basis surface - 1. More...
 
Standard_Boolean IsCNu (const Standard_Integer N) const
 This method answer True if the continuity of the basis surface is N + 1 in the U parametric direction. We suppose in this class that a unique normal is defined at any point on the basis surface. Raised if N <0. More...
 
Standard_Boolean IsCNv (const Standard_Integer N) const
 This method answer True if the continuity of the basis surface is N + 1 in the V parametric direction. We suppose in this class that a unique normal is defined at any point on the basis surface. Raised if N <0. More...
 
Standard_Boolean IsUClosed () const
 Checks whether this offset surface is closed in the u parametric direction. Returns true if, taking uFirst and uLast as the parametric bounds in the u parametric direction, the distance between the points P(uFirst,v) and P(uLast,v) is less than or equal to gp::Resolution() for each value of the parameter v. More...
 
Standard_Boolean IsVClosed () const
 Checks whether this offset surface is closed in the u or v parametric direction. Returns true if taking vFirst and vLast as the parametric bounds in the v parametric direction, the distance between the points P(u,vFirst) and P(u,vLast) is less than or equal to gp::Resolution() for each value of the parameter u. More...
 
Standard_Boolean IsUPeriodic () const
 Returns true if this offset surface is periodic in the u parametric direction, i.e. if the basis surface of this offset surface is periodic in this direction. More...
 
virtual Standard_Real UPeriod () const
 Returns the period of this offset surface in the u parametric direction respectively, i.e. the period of the basis surface of this offset surface in this parametric direction. raises if the surface is not uperiodic. More...
 
Standard_Boolean IsVPeriodic () const
 Returns true if this offset surface is periodic in the v parametric direction, i.e. if the basis surface of this offset surface is periodic in this direction. More...
 
virtual Standard_Real VPeriod () const
 Returns the period of this offset surface in the v parametric direction respectively, i.e. the period of the basis surface of this offset surface in this parametric direction. raises if the surface is not vperiodic. More...
 
Handle< Geom_CurveUIso (const Standard_Real U) const
 Computes the U isoparametric curve. More...
 
Handle< Geom_CurveVIso (const Standard_Real V) const
 Computes the V isoparametric curve. More...
 
void D0 (const Standard_Real U, const Standard_Real V, gp_Pnt &P) const
 P (U, V) = Pbasis + Offset * Ndir where Ndir = D1Ubasis ^ D1Vbasis / ||D1Ubasis ^ D1Vbasis|| is the normal direction of the basis surface. Pbasis, D1Ubasis, D1Vbasis are the point and the first derivatives on the basis surface. If Ndir is undefined this method computes an approched normal direction using the following limited development : Ndir = N0 + DNdir/DU + DNdir/DV + Eps with Eps->0 which requires to compute the second derivatives on the basis surface. If the normal direction cannot be approximate for this order of derivation the exception UndefinedValue is raised. More...
 
void D1 (const Standard_Real U, const Standard_Real V, gp_Pnt &P, gp_Vec &D1U, gp_Vec &D1V) const
 Raised if the continuity of the basis surface is not C2. More...
 
void D2 (const Standard_Real U, const Standard_Real V, gp_Pnt &P, gp_Vec &D1U, gp_Vec &D1V, gp_Vec &D2U, gp_Vec &D2V, gp_Vec &D2UV) const
 —Purpose ; Raised if the continuity of the basis surface is not C3. More...
 
void D3 (const Standard_Real U, const Standard_Real V, gp_Pnt &P, gp_Vec &D1U, gp_Vec &D1V, gp_Vec &D2U, gp_Vec &D2V, gp_Vec &D2UV, gp_Vec &D3U, gp_Vec &D3V, gp_Vec &D3UUV, gp_Vec &D3UVV) const
 Raised if the continuity of the basis surface is not C4. More...
 
gp_Vec DN (const Standard_Real U, const Standard_Real V, const Standard_Integer Nu, const Standard_Integer Nv) const
 Computes the derivative of order Nu in the direction u and Nv in the direction v. —Purpose ; Raised if the continuity of the basis surface is not CNu + 1 in the U direction and CNv + 1 in the V direction. Raised if Nu + Nv < 1 or Nu < 0 or Nv < 0. More...
 
void Value (const Standard_Real U, const Standard_Real V, gp_Pnt &P, gp_Pnt &Pbasis, gp_Vec &D1Ubasis, gp_Vec &D1Vbasis) const
 P (U, V) = Pbasis + Offset * Ndir where Ndir = D1Ubasis ^ D1Vbasis / ||D1Ubasis ^ D1Vbasis|| is the normal direction of the surface. If Ndir is undefined this method computes an approched normal direction using the following limited development : Ndir = N0 + DNdir/DU + DNdir/DV + Eps with Eps->0 which requires to compute the second derivatives on the basis surface. If the normal direction cannot be approximate for this order of derivation the exception UndefinedValue is raised. More...
 
void D1 (const Standard_Real U, const Standard_Real V, gp_Pnt &P, gp_Pnt &Pbasis, gp_Vec &D1U, gp_Vec &D1V, gp_Vec &D1Ubasis, gp_Vec &D1Vbasis, gp_Vec &D2Ubasis, gp_Vec &D2Vbasis, gp_Vec &D2UVbasis) const
 Raised if the continuity of the basis surface is not C2. More...
 
void D2 (const Standard_Real U, const Standard_Real V, gp_Pnt &P, gp_Pnt &Pbasis, gp_Vec &D1U, gp_Vec &D1V, gp_Vec &D2U, gp_Vec &D2V, gp_Vec &D2UV, gp_Vec &D1Ubasis, gp_Vec &D1Vbasis, gp_Vec &D2Ubasis, gp_Vec &D2Vbasis, gp_Vec &D2UVbasis, gp_Vec &D3Ubasis, gp_Vec &D3Vbasis, gp_Vec &D3UUVbasis, gp_Vec &D3UVVbasis) const
 Raised if the continuity of the basis surface is not C3. The following private methods includes common part of local and global methods of derivative evaluations. More...
 
void LocalD0 (const Standard_Real U, const Standard_Real V, const Standard_Integer USide, const Standard_Integer VSide, gp_Pnt &P) const
 
void LocalD1 (const Standard_Real U, const Standard_Real V, const Standard_Integer USide, const Standard_Integer VSide, gp_Pnt &P, gp_Vec &D1U, gp_Vec &D1V) const
 
void LocalD2 (const Standard_Real U, const Standard_Real V, const Standard_Integer USide, const Standard_Integer VSide, gp_Pnt &P, gp_Vec &D1U, gp_Vec &D1V, gp_Vec &D2U, gp_Vec &D2V, gp_Vec &D2UV) const
 
void LocalD3 (const Standard_Real U, const Standard_Real V, const Standard_Integer USide, const Standard_Integer VSide, gp_Pnt &P, gp_Vec &D1U, gp_Vec &D1V, gp_Vec &D2U, gp_Vec &D2V, gp_Vec &D2UV, gp_Vec &D3U, gp_Vec &D3V, gp_Vec &D3UUV, gp_Vec &D3UVV) const
 
gp_Vec LocalDN (const Standard_Real U, const Standard_Real V, const Standard_Integer USide, const Standard_Integer VSide, const Standard_Integer Nu, const Standard_Integer Nv) const
 
void Transform (const gp_Trsf &T)
 Applies the transformation T to this offset surface. Note: the basis surface is also modified. More...
 
virtual void TransformParameters (Standard_Real &U, Standard_Real &V, const gp_Trsf &T) const
 Computes the parameters on the transformed surface for the transform of the point of parameters U,V on <me>. More...
 
virtual gp_GTrsf2d ParametricTransformation (const gp_Trsf &T) const
 Returns a 2d transformation used to find the new parameters of a point on the transformed surface. More...
 
Handle< Geom_GeometryCopy () const
 Creates a new object which is a copy of this offset surface. More...
 
Handle< Geom_SurfaceSurface () const
 returns an equivalent surface of the offset surface when the basis surface is a canonic surface or a rectangular limited surface on canonic surface or if the offset is null. More...
 
Standard_Boolean UOsculatingSurface (const Standard_Real U, const Standard_Real V, Standard_Boolean &IsOpposite, Handle< Geom_BSplineSurface > &UOsculSurf) const
 if Standard_True, L is the local osculating surface along U at the point U,V. It means that DL/DU is collinear to DS/DU . If IsOpposite == Standard_True these vectors have opposite direction. More...
 
Standard_Boolean VOsculatingSurface (const Standard_Real U, const Standard_Real V, Standard_Boolean &IsOpposite, Handle< Geom_BSplineSurface > &VOsculSurf) const
 if Standard_True, L is the local osculating surface along V at the point U,V. It means that DL/DV is collinear to DS/DV . If IsOpposite == Standard_True these vectors have opposite direction. More...
 
GeomAbs_Shape GetBasisSurfContinuity () const
 Returns continuity of the basis surface. More...
 
- Public Member Functions inherited from Geom_Surface
Handle< Geom_SurfaceUReversed () const
 Reverses the U direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned. More...
 
Handle< Geom_SurfaceVReversed () const
 Reverses the V direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned. More...
 
gp_Pnt Value (const Standard_Real U, const Standard_Real V) const
 Computes the point of parameter U on the surface. More...
 
- Public Member Functions inherited from Geom_Geometry
void Mirror (const gp_Pnt &P)
 Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry. More...
 
void Mirror (const gp_Ax1 &A1)
 Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry. More...
 
void Mirror (const gp_Ax2 &A2)
 Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection). More...
 
void Rotate (const gp_Ax1 &A1, const Standard_Real Ang)
 Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians. More...
 
void Scale (const gp_Pnt &P, const Standard_Real S)
 Scales a Geometry. S is the scaling value. More...
 
void Translate (const gp_Vec &V)
 Translates a Geometry. V is the vector of the tanslation. More...
 
void Translate (const gp_Pnt &P1, const gp_Pnt &P2)
 Translates a Geometry from the point P1 to the point P2. More...
 
Handle< Geom_GeometryMirrored (const gp_Pnt &P) const
 
Handle< Geom_GeometryMirrored (const gp_Ax1 &A1) const
 
Handle< Geom_GeometryMirrored (const gp_Ax2 &A2) const
 
Handle< Geom_GeometryRotated (const gp_Ax1 &A1, const Standard_Real Ang) const
 
Handle< Geom_GeometryScaled (const gp_Pnt &P, const Standard_Real S) const
 
Handle< Geom_GeometryTransformed (const gp_Trsf &T) const
 
Handle< Geom_GeometryTranslated (const gp_Vec &V) const
 
Handle< Geom_GeometryTranslated (const gp_Pnt &P1, const gp_Pnt &P2) const
 
- Public Member Functions inherited from MMgt_TShared
virtual void Delete () const
 Memory deallocator for transient classes. More...
 
- Public Member Functions inherited from Standard_Transient
 Standard_Transient ()
 Empty constructor. More...
 
 Standard_Transient (const Standard_Transient &)
 Copy constructor – does nothing. More...
 
Standard_Transientoperator= (const Standard_Transient &)
 Assignment operator, needed to avoid copying reference counter. More...
 
virtual ~Standard_Transient ()
 Destructor must be virtual. More...
 
virtual const Handle_Standard_Type & DynamicType () const
 Returns a type information object about this object. More...
 
Standard_Boolean IsInstance (const Handle_Standard_Type &theType) const
 Returns a true value if this is an instance of Type. More...
 
Standard_Boolean IsInstance (const Standard_CString theTypeName) const
 Returns a true value if this is an instance of TypeName. More...
 
Standard_Boolean IsKind (const Handle_Standard_Type &theType) const
 Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism. More...
 
Standard_Boolean IsKind (const Standard_CString theTypeName) const
 Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism. More...
 
virtual Handle_Standard_Transient This () const
 Returns a Handle which references this object. Must never be called to objects created in stack. More...
 
Standard_Integer GetRefCount () const
 Get the reference counter of this object. More...
 

Detailed Description

Describes an offset surface in 3D space. An offset surface is defined by:

Constructor & Destructor Documentation

Geom_OffsetSurface::Geom_OffsetSurface ( const Handle< Geom_Surface > &  S,
const Standard_Real  Offset,
const Standard_Boolean  isNotCheckC0 = Standard_False 
)

Constructs a surface offset from the basis surface S, where Offset is the distance between the offset surface and the basis surface at any point. A point on the offset surface is built by measuring the offset value along a normal vector at a point on S. This normal vector is given by the cross product D1u^D1v, where D1u and D1v are the vectors tangential to the basis surface in the u and v parametric directions at this point. The side of S on which the offset value is measured is indicated by this normal vector if Offset is positive, or is the inverse sense if Offset is negative. If isNotCheckC0 = TRUE checking if basis surface has C0-continuity is not made. Warnings :

  • The offset surface is built with a copy of the surface S. Therefore, when S is modified the offset surface is not modified.
  • No check is made at the time of construction to detect points on S with multiple possible normal directions. Raised if S is not at least C1. Warnings : No check is done to verify that a unique normal direction is defined at any point of the basis surface S.

Member Function Documentation

Handle< Geom_Surface > Geom_OffsetSurface::BasisSurface ( ) const

Returns the basis surface of this offset surface. Note: The basis surface can be an offset surface.

void Geom_OffsetSurface::Bounds ( Standard_Real U1,
Standard_Real U2,
Standard_Real V1,
Standard_Real V2 
) const
virtual

Returns the parametric bounds U1, U2, V1 and V2 of this offset surface. If the surface is infinite, this function can return:

  • Standard_Real::RealFirst(), or
  • Standard_Real::RealLast().

Implements Geom_Surface.

GeomAbs_Shape Geom_OffsetSurface::Continuity ( ) const
virtual

This method returns the continuity of the basis surface - 1. Continuity of the Offset surface : C0 : only geometric continuity, C1 : continuity of the first derivative all along the Surface, C2 : continuity of the second derivative all along the Surface, C3 : continuity of the third derivative all along the Surface, CN : the order of continuity is infinite. Example : If the basis surface is C2 in the V direction and C3 in the U direction Shape = C1. Warnings : If the basis surface has a unique normal direction defined at any point this method gives the continuity of the offset surface otherwise the effective continuity can be lower than the continuity of the basis surface - 1.

Implements Geom_Surface.

Handle< Geom_Geometry > Geom_OffsetSurface::Copy ( ) const
virtual

Creates a new object which is a copy of this offset surface.

Implements Geom_Geometry.

void Geom_OffsetSurface::D0 ( const Standard_Real  U,
const Standard_Real  V,
gp_Pnt P 
) const
virtual

P (U, V) = Pbasis + Offset * Ndir where Ndir = D1Ubasis ^ D1Vbasis / ||D1Ubasis ^ D1Vbasis|| is the normal direction of the basis surface. Pbasis, D1Ubasis, D1Vbasis are the point and the first derivatives on the basis surface. If Ndir is undefined this method computes an approched normal direction using the following limited development : Ndir = N0 + DNdir/DU + DNdir/DV + Eps with Eps->0 which requires to compute the second derivatives on the basis surface. If the normal direction cannot be approximate for this order of derivation the exception UndefinedValue is raised.

Raised if the continuity of the basis surface is not C1. Raised if the order of derivation required to compute the normal direction is greater than the second order.

Implements Geom_Surface.

void Geom_OffsetSurface::D1 ( const Standard_Real  U,
const Standard_Real  V,
gp_Pnt P,
gp_Vec D1U,
gp_Vec D1V 
) const
virtual

Raised if the continuity of the basis surface is not C2.

Implements Geom_Surface.

void Geom_OffsetSurface::D1 ( const Standard_Real  U,
const Standard_Real  V,
gp_Pnt P,
gp_Pnt Pbasis,
gp_Vec D1U,
gp_Vec D1V,
gp_Vec D1Ubasis,
gp_Vec D1Vbasis,
gp_Vec D2Ubasis,
gp_Vec D2Vbasis,
gp_Vec D2UVbasis 
) const

Raised if the continuity of the basis surface is not C2.

void Geom_OffsetSurface::D2 ( const Standard_Real  U,
const Standard_Real  V,
gp_Pnt P,
gp_Vec D1U,
gp_Vec D1V,
gp_Vec D2U,
gp_Vec D2V,
gp_Vec D2UV 
) const
virtual

—Purpose ; Raised if the continuity of the basis surface is not C3.

Implements Geom_Surface.

void Geom_OffsetSurface::D2 ( const Standard_Real  U,
const Standard_Real  V,
gp_Pnt P,
gp_Pnt Pbasis,
gp_Vec D1U,
gp_Vec D1V,
gp_Vec D2U,
gp_Vec D2V,
gp_Vec D2UV,
gp_Vec D1Ubasis,
gp_Vec D1Vbasis,
gp_Vec D2Ubasis,
gp_Vec D2Vbasis,
gp_Vec D2UVbasis,
gp_Vec D3Ubasis,
gp_Vec D3Vbasis,
gp_Vec D3UUVbasis,
gp_Vec D3UVVbasis 
) const

Raised if the continuity of the basis surface is not C3. The following private methods includes common part of local and global methods of derivative evaluations.

void Geom_OffsetSurface::D3 ( const Standard_Real  U,
const Standard_Real  V,
gp_Pnt P,
gp_Vec D1U,
gp_Vec D1V,
gp_Vec D2U,
gp_Vec D2V,
gp_Vec D2UV,
gp_Vec D3U,
gp_Vec D3V,
gp_Vec D3UUV,
gp_Vec D3UVV 
) const
virtual

Raised if the continuity of the basis surface is not C4.

Implements Geom_Surface.

gp_Vec Geom_OffsetSurface::DN ( const Standard_Real  U,
const Standard_Real  V,
const Standard_Integer  Nu,
const Standard_Integer  Nv 
) const
virtual

Computes the derivative of order Nu in the direction u and Nv in the direction v. —Purpose ; Raised if the continuity of the basis surface is not CNu + 1 in the U direction and CNv + 1 in the V direction. Raised if Nu + Nv < 1 or Nu < 0 or Nv < 0.

The following methods compute the value and derivatives on the offset surface and returns the derivatives on the basis surface too. The computation of the value and derivatives on the basis surface are used to evaluate the offset surface.

Warnings : The exception UndefinedValue or UndefinedDerivative is raised if it is not possible to compute a unique offset direction.

Implements Geom_Surface.

GeomAbs_Shape Geom_OffsetSurface::GetBasisSurfContinuity ( ) const

Returns continuity of the basis surface.

Standard_Boolean Geom_OffsetSurface::IsCNu ( const Standard_Integer  N) const
virtual

This method answer True if the continuity of the basis surface is N + 1 in the U parametric direction. We suppose in this class that a unique normal is defined at any point on the basis surface. Raised if N <0.

Implements Geom_Surface.

Standard_Boolean Geom_OffsetSurface::IsCNv ( const Standard_Integer  N) const
virtual

This method answer True if the continuity of the basis surface is N + 1 in the V parametric direction. We suppose in this class that a unique normal is defined at any point on the basis surface. Raised if N <0.

Implements Geom_Surface.

Standard_Boolean Geom_OffsetSurface::IsUClosed ( ) const
virtual

Checks whether this offset surface is closed in the u parametric direction. Returns true if, taking uFirst and uLast as the parametric bounds in the u parametric direction, the distance between the points P(uFirst,v) and P(uLast,v) is less than or equal to gp::Resolution() for each value of the parameter v.

Implements Geom_Surface.

Standard_Boolean Geom_OffsetSurface::IsUPeriodic ( ) const
virtual

Returns true if this offset surface is periodic in the u parametric direction, i.e. if the basis surface of this offset surface is periodic in this direction.

Implements Geom_Surface.

Standard_Boolean Geom_OffsetSurface::IsVClosed ( ) const
virtual

Checks whether this offset surface is closed in the u or v parametric direction. Returns true if taking vFirst and vLast as the parametric bounds in the v parametric direction, the distance between the points P(u,vFirst) and P(u,vLast) is less than or equal to gp::Resolution() for each value of the parameter u.

Implements Geom_Surface.

Standard_Boolean Geom_OffsetSurface::IsVPeriodic ( ) const
virtual

Returns true if this offset surface is periodic in the v parametric direction, i.e. if the basis surface of this offset surface is periodic in this direction.

Implements Geom_Surface.

void Geom_OffsetSurface::LocalD0 ( const Standard_Real  U,
const Standard_Real  V,
const Standard_Integer  USide,
const Standard_Integer  VSide,
gp_Pnt P 
) const
void Geom_OffsetSurface::LocalD1 ( const Standard_Real  U,
const Standard_Real  V,
const Standard_Integer  USide,
const Standard_Integer  VSide,
gp_Pnt P,
gp_Vec D1U,
gp_Vec D1V 
) const
void Geom_OffsetSurface::LocalD2 ( const Standard_Real  U,
const Standard_Real  V,
const Standard_Integer  USide,
const Standard_Integer  VSide,
gp_Pnt P,
gp_Vec D1U,
gp_Vec D1V,
gp_Vec D2U,
gp_Vec D2V,
gp_Vec D2UV 
) const
void Geom_OffsetSurface::LocalD3 ( const Standard_Real  U,
const Standard_Real  V,
const Standard_Integer  USide,
const Standard_Integer  VSide,
gp_Pnt P,
gp_Vec D1U,
gp_Vec D1V,
gp_Vec D2U,
gp_Vec D2V,
gp_Vec D2UV,
gp_Vec D3U,
gp_Vec D3V,
gp_Vec D3UUV,
gp_Vec D3UVV 
) const
gp_Vec Geom_OffsetSurface::LocalDN ( const Standard_Real  U,
const Standard_Real  V,
const Standard_Integer  USide,
const Standard_Integer  VSide,
const Standard_Integer  Nu,
const Standard_Integer  Nv 
) const
Standard_Real Geom_OffsetSurface::Offset ( ) const

Returns the offset value of this offset surface.

virtual gp_GTrsf2d Geom_OffsetSurface::ParametricTransformation ( const gp_Trsf T) const
virtual

Returns a 2d transformation used to find the new parameters of a point on the transformed surface.

me->Transformed(T)->Value(U',V')

is the same point as

me->Value(U,V).Transformed(T)

Where U',V' are obtained by transforming U,V with th 2d transformation returned by

me->ParametricTransformation(T)

This methods calls the basis surface method.

Reimplemented from Geom_Surface.

void Geom_OffsetSurface::SetBasisSurface ( const Handle< Geom_Surface > &  S,
const Standard_Boolean  isNotCheckC0 = Standard_False 
)

Raised if S is not at least C1. Warnings : No check is done to verify that a unique normal direction is defined at any point of the basis surface S. If isNotCheckC0 = TRUE checking if basis surface has C0-continuity is not made. Exceptions Standard_ConstructionError if the surface S is not at least "C1" continuous.

void Geom_OffsetSurface::SetOffsetValue ( const Standard_Real  D)

Changes this offset surface by assigning D as the offset value.

Handle< Geom_Surface > Geom_OffsetSurface::Surface ( ) const

returns an equivalent surface of the offset surface when the basis surface is a canonic surface or a rectangular limited surface on canonic surface or if the offset is null.

void Geom_OffsetSurface::Transform ( const gp_Trsf T)
virtual

Applies the transformation T to this offset surface. Note: the basis surface is also modified.

Implements Geom_Geometry.

virtual void Geom_OffsetSurface::TransformParameters ( Standard_Real U,
Standard_Real V,
const gp_Trsf T 
) const
virtual

Computes the parameters on the transformed surface for the transform of the point of parameters U,V on <me>.

me->Transformed(T)->Value(U',V')

is the same point as

me->Value(U,V).Transformed(T)

Where U',V' are the new values of U,V after calling

me->TranformParameters(U,V,T) This methods calls the basis surface method.

Reimplemented from Geom_Surface.

Handle< Geom_Curve > Geom_OffsetSurface::UIso ( const Standard_Real  U) const
virtual

Computes the U isoparametric curve.

Implements Geom_Surface.

Standard_Boolean Geom_OffsetSurface::UOsculatingSurface ( const Standard_Real  U,
const Standard_Real  V,
Standard_Boolean IsOpposite,
Handle< Geom_BSplineSurface > &  UOsculSurf 
) const

if Standard_True, L is the local osculating surface along U at the point U,V. It means that DL/DU is collinear to DS/DU . If IsOpposite == Standard_True these vectors have opposite direction.

virtual Standard_Real Geom_OffsetSurface::UPeriod ( ) const
virtual

Returns the period of this offset surface in the u parametric direction respectively, i.e. the period of the basis surface of this offset surface in this parametric direction. raises if the surface is not uperiodic.

Reimplemented from Geom_Surface.

void Geom_OffsetSurface::UReverse ( )
virtual

Changes the orientation of this offset surface in the u parametric direction. The bounds of the surface are not changed but the given parametric direction is reversed.

Implements Geom_Surface.

Standard_Real Geom_OffsetSurface::UReversedParameter ( const Standard_Real  U) const
virtual

Computes the u parameter on the modified surface, produced by reversing the u parametric direction of this offset surface, for any point of u parameter U on this offset surface.

Implements Geom_Surface.

void Geom_OffsetSurface::Value ( const Standard_Real  U,
const Standard_Real  V,
gp_Pnt P,
gp_Pnt Pbasis,
gp_Vec D1Ubasis,
gp_Vec D1Vbasis 
) const

P (U, V) = Pbasis + Offset * Ndir where Ndir = D1Ubasis ^ D1Vbasis / ||D1Ubasis ^ D1Vbasis|| is the normal direction of the surface. If Ndir is undefined this method computes an approched normal direction using the following limited development : Ndir = N0 + DNdir/DU + DNdir/DV + Eps with Eps->0 which requires to compute the second derivatives on the basis surface. If the normal direction cannot be approximate for this order of derivation the exception UndefinedValue is raised.

Raised if the continuity of the basis surface is not C1. Raised if the order of derivation required to compute the normal direction is greater than the second order.

Handle< Geom_Curve > Geom_OffsetSurface::VIso ( const Standard_Real  V) const
virtual

Computes the V isoparametric curve.

Te followings methods compute value and derivatives.

Warnings An exception is raised if a unique normal vector is not defined on the basis surface for the parametric value (U,V). No check is done at the creation time and we suppose in this package that the offset surface can be defined at any point.

Implements Geom_Surface.

Standard_Boolean Geom_OffsetSurface::VOsculatingSurface ( const Standard_Real  U,
const Standard_Real  V,
Standard_Boolean IsOpposite,
Handle< Geom_BSplineSurface > &  VOsculSurf 
) const

if Standard_True, L is the local osculating surface along V at the point U,V. It means that DL/DV is collinear to DS/DV . If IsOpposite == Standard_True these vectors have opposite direction.

virtual Standard_Real Geom_OffsetSurface::VPeriod ( ) const
virtual

Returns the period of this offset surface in the v parametric direction respectively, i.e. the period of the basis surface of this offset surface in this parametric direction. raises if the surface is not vperiodic.

Reimplemented from Geom_Surface.

void Geom_OffsetSurface::VReverse ( )
virtual

Changes the orientation of this offset surface in the v parametric direction. The bounds of the surface are not changed but the given parametric direction is reversed.

Implements Geom_Surface.

Standard_Real Geom_OffsetSurface::VReversedParameter ( const Standard_Real  V) const
virtual

Computes the v parameter on the modified surface, produced by reversing the or v parametric direction of this offset surface, for any point of v parameter V on this offset surface.

Implements Geom_Surface.


The documentation for this class was generated from the following file: