Open CASCADE Technology  6.9.1
Public Member Functions
Geom_SphericalSurface Class Reference

Describes a sphere. A sphere is defined by its radius, and is positioned in space by a coordinate system (a gp_Ax3 object), the origin of which is the center of the sphere. This coordinate system is the "local coordinate system" of the sphere. The following apply: More...

#include <Geom_SphericalSurface.hxx>

Inheritance diagram for Geom_SphericalSurface:
Inheritance graph
[legend]

Public Member Functions

 Geom_SphericalSurface (const gp_Ax3 &A3, const Standard_Real Radius)
 A3 is the local coordinate system of the surface. At the creation the parametrization of the surface is defined such as the normal Vector (N = D1U ^ D1V) is directed away from the center of the sphere. The direction of increasing parametric value V is defined by the rotation around the "YDirection" of A2 in the trigonometric sense and the orientation of increasing parametric value U is defined by the rotation around the main direction of A2 in the trigonometric sense. Warnings : It is not forbidden to create a spherical surface with Radius = 0.0 Raised if Radius < 0.0. More...
 
 Geom_SphericalSurface (const gp_Sphere &S)
 Creates a SphericalSurface from a non persistent Sphere from package gp. More...
 
void SetRadius (const Standard_Real R)
 Assigns the value R to the radius of this sphere. Exceptions Standard_ConstructionError if R is less than 0.0. More...
 
void SetSphere (const gp_Sphere &S)
 Converts the gp_Sphere S into this sphere. More...
 
gp_Sphere Sphere () const
 Returns a non persistent sphere with the same geometric properties as <me>. More...
 
Standard_Real UReversedParameter (const Standard_Real U) const
 Computes the u parameter on the modified surface, when reversing its u parametric direction, for any point of u parameter U on this sphere. In the case of a sphere, these functions returns 2.PI - U. More...
 
Standard_Real VReversedParameter (const Standard_Real V) const
 Computes the v parameter on the modified surface, when reversing its v parametric direction, for any point of v parameter V on this sphere. In the case of a sphere, these functions returns -U. More...
 
Standard_Real Area () const
 Computes the aera of the spherical surface. More...
 
void Bounds (Standard_Real &U1, Standard_Real &U2, Standard_Real &V1, Standard_Real &V2) const
 Returns the parametric bounds U1, U2, V1 and V2 of this sphere. For a sphere: U1 = 0, U2 = 2*PI, V1 = -PI/2, V2 = PI/2. More...
 
void Coefficients (Standard_Real &A1, Standard_Real &A2, Standard_Real &A3, Standard_Real &B1, Standard_Real &B2, Standard_Real &B3, Standard_Real &C1, Standard_Real &C2, Standard_Real &C3, Standard_Real &D) const
 Returns the coefficients of the implicit equation of the quadric in the absolute cartesian coordinates system : These coefficients are normalized. A1.X**2 + A2.Y**2 + A3.Z**2 + 2.(B1.X.Y + B2.X.Z + B3.Y.Z) + 2.(C1.X + C2.Y + C3.Z) + D = 0.0. More...
 
Standard_Real Radius () const
 Computes the coefficients of the implicit equation of this quadric in the absolute Cartesian coordinate system: A1.X**2 + A2.Y**2 + A3.Z**2 + 2.(B1.X.Y + B2.X.Z + B3.Y.Z) + 2.(C1.X + C2.Y + C3.Z) + D = 0.0 An implicit normalization is applied (i.e. A1 = A2 = 1. in the local coordinate system of this sphere). More...
 
Standard_Real Volume () const
 Computes the volume of the spherical surface. More...
 
Standard_Boolean IsUClosed () const
 Returns True. More...
 
Standard_Boolean IsVClosed () const
 Returns False. More...
 
Standard_Boolean IsUPeriodic () const
 Returns True. More...
 
Standard_Boolean IsVPeriodic () const
 Returns False. More...
 
Handle< Geom_CurveUIso (const Standard_Real U) const
 Computes the U isoparametric curve. The U isoparametric curves of the surface are defined by the section of the spherical surface with plane obtained by rotation of the plane (Location, XAxis, ZAxis) around ZAxis. This plane defines the origin of parametrization u. For a SphericalSurface the UIso curve is a Circle. Warnings : The radius of this circle can be zero. More...
 
Handle< Geom_CurveVIso (const Standard_Real V) const
 Computes the V isoparametric curve. The V isoparametric curves of the surface are defined by the section of the spherical surface with plane parallel to the plane (Location, XAxis, YAxis). This plane defines the origin of parametrization V. Be careful if V is close to PI/2 or 3*PI/2 the radius of the circle becomes tiny. It is not forbidden in this toolkit to create circle with radius = 0.0 For a SphericalSurface the VIso curve is a Circle. Warnings : The radius of this circle can be zero. More...
 
void D0 (const Standard_Real U, const Standard_Real V, gp_Pnt &P) const
 Computes the point P (U, V) on the surface. P (U, V) = Loc + Radius * Sin (V) * Zdir + Radius * Cos (V) * (cos (U) * XDir + sin (U) * YDir) where Loc is the origin of the placement plane (XAxis, YAxis) XDir is the direction of the XAxis and YDir the direction of the YAxis and ZDir the direction of the ZAxis. More...
 
void D1 (const Standard_Real U, const Standard_Real V, gp_Pnt &P, gp_Vec &D1U, gp_Vec &D1V) const
 Computes the current point and the first derivatives in the directions U and V. More...
 
void D2 (const Standard_Real U, const Standard_Real V, gp_Pnt &P, gp_Vec &D1U, gp_Vec &D1V, gp_Vec &D2U, gp_Vec &D2V, gp_Vec &D2UV) const
 Computes the current point, the first and the second derivatives in the directions U and V. More...
 
void D3 (const Standard_Real U, const Standard_Real V, gp_Pnt &P, gp_Vec &D1U, gp_Vec &D1V, gp_Vec &D2U, gp_Vec &D2V, gp_Vec &D2UV, gp_Vec &D3U, gp_Vec &D3V, gp_Vec &D3UUV, gp_Vec &D3UVV) const
 Computes the current point, the first,the second and the third derivatives in the directions U and V. More...
 
gp_Vec DN (const Standard_Real U, const Standard_Real V, const Standard_Integer Nu, const Standard_Integer Nv) const
 Computes the derivative of order Nu in the direction u and Nv in the direction v. Raised if Nu + Nv < 1 or Nu < 0 or Nv < 0. More...
 
void Transform (const gp_Trsf &T)
 Applies the transformation T to this sphere. More...
 
Handle< Geom_GeometryCopy () const
 Creates a new object which is a copy of this sphere. More...
 
- Public Member Functions inherited from Geom_ElementarySurface
void SetAxis (const gp_Ax1 &A1)
 Changes the main axis (ZAxis) of the elementary surface. More...
 
void SetLocation (const gp_Pnt &Loc)
 Changes the location of the local coordinates system of the surface. More...
 
void SetPosition (const gp_Ax3 &A3)
 Changes the local coordinates system of the surface. More...
 
gp_Ax1 Axis () const
 Returns the main axis of the surface (ZAxis). More...
 
gp_Pnt Location () const
 Returns the location point of the local coordinate system of the surface. More...
 
const gp_Ax3Position () const
 Returns the local coordinates system of the surface. More...
 
virtual void UReverse ()
 Reverses the U parametric direction of the surface. More...
 
virtual void VReverse ()
 Reverses the V parametric direction of the surface. More...
 
GeomAbs_Shape Continuity () const
 Returns GeomAbs_CN, the global continuity of any elementary surface. More...
 
Standard_Boolean IsCNu (const Standard_Integer N) const
 Returns True. More...
 
Standard_Boolean IsCNv (const Standard_Integer N) const
 Returns True. More...
 
- Public Member Functions inherited from Geom_Surface
Handle< Geom_SurfaceUReversed () const
 Reverses the U direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned. More...
 
Handle< Geom_SurfaceVReversed () const
 Reverses the V direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned. More...
 
virtual void TransformParameters (Standard_Real &U, Standard_Real &V, const gp_Trsf &T) const
 Computes the parameters on the transformed surface for the transform of the point of parameters U,V on <me>. More...
 
virtual gp_GTrsf2d ParametricTransformation (const gp_Trsf &T) const
 Returns a 2d transformation used to find the new parameters of a point on the transformed surface. More...
 
virtual Standard_Real UPeriod () const
 Returns the period of this surface in the u parametric direction. raises if the surface is not uperiodic. More...
 
virtual Standard_Real VPeriod () const
 Returns the period of this surface in the v parametric direction. raises if the surface is not vperiodic. More...
 
gp_Pnt Value (const Standard_Real U, const Standard_Real V) const
 Computes the point of parameter U on the surface. More...
 
- Public Member Functions inherited from Geom_Geometry
void Mirror (const gp_Pnt &P)
 Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry. More...
 
void Mirror (const gp_Ax1 &A1)
 Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry. More...
 
void Mirror (const gp_Ax2 &A2)
 Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection). More...
 
void Rotate (const gp_Ax1 &A1, const Standard_Real Ang)
 Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians. More...
 
void Scale (const gp_Pnt &P, const Standard_Real S)
 Scales a Geometry. S is the scaling value. More...
 
void Translate (const gp_Vec &V)
 Translates a Geometry. V is the vector of the tanslation. More...
 
void Translate (const gp_Pnt &P1, const gp_Pnt &P2)
 Translates a Geometry from the point P1 to the point P2. More...
 
Handle< Geom_GeometryMirrored (const gp_Pnt &P) const
 
Handle< Geom_GeometryMirrored (const gp_Ax1 &A1) const
 
Handle< Geom_GeometryMirrored (const gp_Ax2 &A2) const
 
Handle< Geom_GeometryRotated (const gp_Ax1 &A1, const Standard_Real Ang) const
 
Handle< Geom_GeometryScaled (const gp_Pnt &P, const Standard_Real S) const
 
Handle< Geom_GeometryTransformed (const gp_Trsf &T) const
 
Handle< Geom_GeometryTranslated (const gp_Vec &V) const
 
Handle< Geom_GeometryTranslated (const gp_Pnt &P1, const gp_Pnt &P2) const
 
- Public Member Functions inherited from MMgt_TShared
virtual void Delete () const
 Memory deallocator for transient classes. More...
 
- Public Member Functions inherited from Standard_Transient
 Standard_Transient ()
 Empty constructor. More...
 
 Standard_Transient (const Standard_Transient &)
 Copy constructor – does nothing. More...
 
Standard_Transientoperator= (const Standard_Transient &)
 Assignment operator, needed to avoid copying reference counter. More...
 
virtual ~Standard_Transient ()
 Destructor must be virtual. More...
 
virtual const Handle_Standard_Type & DynamicType () const
 Returns a type information object about this object. More...
 
Standard_Boolean IsInstance (const Handle_Standard_Type &theType) const
 Returns a true value if this is an instance of Type. More...
 
Standard_Boolean IsInstance (const Standard_CString theTypeName) const
 Returns a true value if this is an instance of TypeName. More...
 
Standard_Boolean IsKind (const Handle_Standard_Type &theType) const
 Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism. More...
 
Standard_Boolean IsKind (const Standard_CString theTypeName) const
 Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism. More...
 
virtual Handle_Standard_Transient This () const
 Returns a Handle which references this object. Must never be called to objects created in stack. More...
 
Standard_Integer GetRefCount () const
 Get the reference counter of this object. More...
 

Additional Inherited Members

- Protected Attributes inherited from Geom_ElementarySurface
gp_Ax3 pos
 

Detailed Description

Describes a sphere. A sphere is defined by its radius, and is positioned in space by a coordinate system (a gp_Ax3 object), the origin of which is the center of the sphere. This coordinate system is the "local coordinate system" of the sphere. The following apply:

Constructor & Destructor Documentation

Geom_SphericalSurface::Geom_SphericalSurface ( const gp_Ax3 A3,
const Standard_Real  Radius 
)

A3 is the local coordinate system of the surface. At the creation the parametrization of the surface is defined such as the normal Vector (N = D1U ^ D1V) is directed away from the center of the sphere. The direction of increasing parametric value V is defined by the rotation around the "YDirection" of A2 in the trigonometric sense and the orientation of increasing parametric value U is defined by the rotation around the main direction of A2 in the trigonometric sense. Warnings : It is not forbidden to create a spherical surface with Radius = 0.0 Raised if Radius < 0.0.

Geom_SphericalSurface::Geom_SphericalSurface ( const gp_Sphere S)

Creates a SphericalSurface from a non persistent Sphere from package gp.

Member Function Documentation

Standard_Real Geom_SphericalSurface::Area ( ) const

Computes the aera of the spherical surface.

void Geom_SphericalSurface::Bounds ( Standard_Real U1,
Standard_Real U2,
Standard_Real V1,
Standard_Real V2 
) const
virtual

Returns the parametric bounds U1, U2, V1 and V2 of this sphere. For a sphere: U1 = 0, U2 = 2*PI, V1 = -PI/2, V2 = PI/2.

Implements Geom_Surface.

void Geom_SphericalSurface::Coefficients ( Standard_Real A1,
Standard_Real A2,
Standard_Real A3,
Standard_Real B1,
Standard_Real B2,
Standard_Real B3,
Standard_Real C1,
Standard_Real C2,
Standard_Real C3,
Standard_Real D 
) const

Returns the coefficients of the implicit equation of the quadric in the absolute cartesian coordinates system : These coefficients are normalized. A1.X**2 + A2.Y**2 + A3.Z**2 + 2.(B1.X.Y + B2.X.Z + B3.Y.Z) + 2.(C1.X + C2.Y + C3.Z) + D = 0.0.

Handle< Geom_Geometry > Geom_SphericalSurface::Copy ( ) const
virtual

Creates a new object which is a copy of this sphere.

Implements Geom_Geometry.

void Geom_SphericalSurface::D0 ( const Standard_Real  U,
const Standard_Real  V,
gp_Pnt P 
) const
virtual

Computes the point P (U, V) on the surface. P (U, V) = Loc + Radius * Sin (V) * Zdir + Radius * Cos (V) * (cos (U) * XDir + sin (U) * YDir) where Loc is the origin of the placement plane (XAxis, YAxis) XDir is the direction of the XAxis and YDir the direction of the YAxis and ZDir the direction of the ZAxis.

Implements Geom_Surface.

void Geom_SphericalSurface::D1 ( const Standard_Real  U,
const Standard_Real  V,
gp_Pnt P,
gp_Vec D1U,
gp_Vec D1V 
) const
virtual

Computes the current point and the first derivatives in the directions U and V.

Implements Geom_Surface.

void Geom_SphericalSurface::D2 ( const Standard_Real  U,
const Standard_Real  V,
gp_Pnt P,
gp_Vec D1U,
gp_Vec D1V,
gp_Vec D2U,
gp_Vec D2V,
gp_Vec D2UV 
) const
virtual

Computes the current point, the first and the second derivatives in the directions U and V.

Implements Geom_Surface.

void Geom_SphericalSurface::D3 ( const Standard_Real  U,
const Standard_Real  V,
gp_Pnt P,
gp_Vec D1U,
gp_Vec D1V,
gp_Vec D2U,
gp_Vec D2V,
gp_Vec D2UV,
gp_Vec D3U,
gp_Vec D3V,
gp_Vec D3UUV,
gp_Vec D3UVV 
) const
virtual

Computes the current point, the first,the second and the third derivatives in the directions U and V.

Implements Geom_Surface.

gp_Vec Geom_SphericalSurface::DN ( const Standard_Real  U,
const Standard_Real  V,
const Standard_Integer  Nu,
const Standard_Integer  Nv 
) const
virtual

Computes the derivative of order Nu in the direction u and Nv in the direction v. Raised if Nu + Nv < 1 or Nu < 0 or Nv < 0.

Implements Geom_Surface.

Standard_Boolean Geom_SphericalSurface::IsUClosed ( ) const
virtual

Returns True.

Implements Geom_Surface.

Standard_Boolean Geom_SphericalSurface::IsUPeriodic ( ) const
virtual

Returns True.

Implements Geom_Surface.

Standard_Boolean Geom_SphericalSurface::IsVClosed ( ) const
virtual

Returns False.

Implements Geom_Surface.

Standard_Boolean Geom_SphericalSurface::IsVPeriodic ( ) const
virtual

Returns False.

Implements Geom_Surface.

Standard_Real Geom_SphericalSurface::Radius ( ) const

Computes the coefficients of the implicit equation of this quadric in the absolute Cartesian coordinate system: A1.X**2 + A2.Y**2 + A3.Z**2 + 2.(B1.X.Y + B2.X.Z + B3.Y.Z) + 2.(C1.X + C2.Y + C3.Z) + D = 0.0 An implicit normalization is applied (i.e. A1 = A2 = 1. in the local coordinate system of this sphere).

void Geom_SphericalSurface::SetRadius ( const Standard_Real  R)

Assigns the value R to the radius of this sphere. Exceptions Standard_ConstructionError if R is less than 0.0.

void Geom_SphericalSurface::SetSphere ( const gp_Sphere S)

Converts the gp_Sphere S into this sphere.

gp_Sphere Geom_SphericalSurface::Sphere ( ) const

Returns a non persistent sphere with the same geometric properties as <me>.

void Geom_SphericalSurface::Transform ( const gp_Trsf T)
virtual

Applies the transformation T to this sphere.

Implements Geom_Geometry.

Handle< Geom_Curve > Geom_SphericalSurface::UIso ( const Standard_Real  U) const
virtual

Computes the U isoparametric curve. The U isoparametric curves of the surface are defined by the section of the spherical surface with plane obtained by rotation of the plane (Location, XAxis, ZAxis) around ZAxis. This plane defines the origin of parametrization u. For a SphericalSurface the UIso curve is a Circle. Warnings : The radius of this circle can be zero.

Implements Geom_Surface.

Standard_Real Geom_SphericalSurface::UReversedParameter ( const Standard_Real  U) const
virtual

Computes the u parameter on the modified surface, when reversing its u parametric direction, for any point of u parameter U on this sphere. In the case of a sphere, these functions returns 2.PI - U.

Implements Geom_ElementarySurface.

Handle< Geom_Curve > Geom_SphericalSurface::VIso ( const Standard_Real  V) const
virtual

Computes the V isoparametric curve. The V isoparametric curves of the surface are defined by the section of the spherical surface with plane parallel to the plane (Location, XAxis, YAxis). This plane defines the origin of parametrization V. Be careful if V is close to PI/2 or 3*PI/2 the radius of the circle becomes tiny. It is not forbidden in this toolkit to create circle with radius = 0.0 For a SphericalSurface the VIso curve is a Circle. Warnings : The radius of this circle can be zero.

Implements Geom_Surface.

Standard_Real Geom_SphericalSurface::Volume ( ) const

Computes the volume of the spherical surface.

Standard_Real Geom_SphericalSurface::VReversedParameter ( const Standard_Real  V) const
virtual

Computes the v parameter on the modified surface, when reversing its v parametric direction, for any point of v parameter V on this sphere. In the case of a sphere, these functions returns -U.

Implements Geom_ElementarySurface.


The documentation for this class was generated from the following file: