Open CASCADE Technology  6.9.1
Public Member Functions
math_GlobOptMin Class Reference

This class represents Evtushenko's algorithm of global optimization based on nonuniform mesh.
Article: Yu. Evtushenko. Numerical methods for finding global extreme (case of a non-uniform mesh).
U.S.S.R. Comput. Maths. Math. Phys., Vol. 11, N 6, pp. 38-54. More...

#include <math_GlobOptMin.hxx>

Public Member Functions

 math_GlobOptMin (math_MultipleVarFunction *theFunc, const math_Vector &theLowerBorder, const math_Vector &theUpperBorder, const Standard_Real theC=9, const Standard_Real theDiscretizationTol=1.0e-2, const Standard_Real theSameTol=1.0e-7)
 
void SetGlobalParams (math_MultipleVarFunction *theFunc, const math_Vector &theLowerBorder, const math_Vector &theUpperBorder, const Standard_Real theC=9, const Standard_Real theDiscretizationTol=1.0e-2, const Standard_Real theSameTol=1.0e-7)
 
void SetLocalParams (const math_Vector &theLocalA, const math_Vector &theLocalB)
 
void SetTol (const Standard_Real theDiscretizationTol, const Standard_Real theSameTol)
 
void GetTol (Standard_Real &theDiscretizationTol, Standard_Real &theSameTol)
 
 ~math_GlobOptMin ()
 
void Perform (const Standard_Boolean isFindSingleSolution=Standard_False)
 
Standard_Real GetF ()
 Get best functional value. More...
 
Standard_Integer NbExtrema ()
 Return count of global extremas. More...
 
void Points (const Standard_Integer theIndex, math_Vector &theSol)
 Return solution theIndex, 1 <= theIndex <= NbExtrema. More...
 
Standard_Boolean isDone ()
 

Detailed Description

This class represents Evtushenko's algorithm of global optimization based on nonuniform mesh.
Article: Yu. Evtushenko. Numerical methods for finding global extreme (case of a non-uniform mesh).
U.S.S.R. Comput. Maths. Math. Phys., Vol. 11, N 6, pp. 38-54.

Constructor & Destructor Documentation

math_GlobOptMin::math_GlobOptMin ( math_MultipleVarFunction theFunc,
const math_Vector theLowerBorder,
const math_Vector theUpperBorder,
const Standard_Real  theC = 9,
const Standard_Real  theDiscretizationTol = 1.0e-2,
const Standard_Real  theSameTol = 1.0e-7 
)
math_GlobOptMin::~math_GlobOptMin ( )

Member Function Documentation

Standard_Real math_GlobOptMin::GetF ( )

Get best functional value.

void math_GlobOptMin::GetTol ( Standard_Real theDiscretizationTol,
Standard_Real theSameTol 
)
Standard_Boolean math_GlobOptMin::isDone ( )
Standard_Integer math_GlobOptMin::NbExtrema ( )

Return count of global extremas.

void math_GlobOptMin::Perform ( const Standard_Boolean  isFindSingleSolution = Standard_False)
Parameters
isFindSingleSolution- defines whether to find single solution or all solutions.
void math_GlobOptMin::Points ( const Standard_Integer  theIndex,
math_Vector theSol 
)

Return solution theIndex, 1 <= theIndex <= NbExtrema.

void math_GlobOptMin::SetGlobalParams ( math_MultipleVarFunction theFunc,
const math_Vector theLowerBorder,
const math_Vector theUpperBorder,
const Standard_Real  theC = 9,
const Standard_Real  theDiscretizationTol = 1.0e-2,
const Standard_Real  theSameTol = 1.0e-7 
)
void math_GlobOptMin::SetLocalParams ( const math_Vector theLocalA,
const math_Vector theLocalB 
)
void math_GlobOptMin::SetTol ( const Standard_Real  theDiscretizationTol,
const Standard_Real  theSameTol 
)

The documentation for this class was generated from the following file: