Open CASCADE Technology
6.9.1
|
This class represents Evtushenko's algorithm of global optimization based on nonuniform mesh.
Article: Yu. Evtushenko. Numerical methods for finding global extreme (case of a non-uniform mesh).
U.S.S.R. Comput. Maths. Math. Phys., Vol. 11, N 6, pp. 38-54.
More...
#include <math_GlobOptMin.hxx>
Public Member Functions | |
math_GlobOptMin (math_MultipleVarFunction *theFunc, const math_Vector &theLowerBorder, const math_Vector &theUpperBorder, const Standard_Real theC=9, const Standard_Real theDiscretizationTol=1.0e-2, const Standard_Real theSameTol=1.0e-7) | |
void | SetGlobalParams (math_MultipleVarFunction *theFunc, const math_Vector &theLowerBorder, const math_Vector &theUpperBorder, const Standard_Real theC=9, const Standard_Real theDiscretizationTol=1.0e-2, const Standard_Real theSameTol=1.0e-7) |
void | SetLocalParams (const math_Vector &theLocalA, const math_Vector &theLocalB) |
void | SetTol (const Standard_Real theDiscretizationTol, const Standard_Real theSameTol) |
void | GetTol (Standard_Real &theDiscretizationTol, Standard_Real &theSameTol) |
~math_GlobOptMin () | |
void | Perform (const Standard_Boolean isFindSingleSolution=Standard_False) |
Standard_Real | GetF () |
Get best functional value. More... | |
Standard_Integer | NbExtrema () |
Return count of global extremas. More... | |
void | Points (const Standard_Integer theIndex, math_Vector &theSol) |
Return solution theIndex, 1 <= theIndex <= NbExtrema. More... | |
Standard_Boolean | isDone () |
This class represents Evtushenko's algorithm of global optimization based on nonuniform mesh.
Article: Yu. Evtushenko. Numerical methods for finding global extreme (case of a non-uniform mesh).
U.S.S.R. Comput. Maths. Math. Phys., Vol. 11, N 6, pp. 38-54.
math_GlobOptMin::math_GlobOptMin | ( | math_MultipleVarFunction * | theFunc, |
const math_Vector & | theLowerBorder, | ||
const math_Vector & | theUpperBorder, | ||
const Standard_Real | theC = 9 , |
||
const Standard_Real | theDiscretizationTol = 1.0e-2 , |
||
const Standard_Real | theSameTol = 1.0e-7 |
||
) |
math_GlobOptMin::~math_GlobOptMin | ( | ) |
Standard_Real math_GlobOptMin::GetF | ( | ) |
Get best functional value.
void math_GlobOptMin::GetTol | ( | Standard_Real & | theDiscretizationTol, |
Standard_Real & | theSameTol | ||
) |
Standard_Boolean math_GlobOptMin::isDone | ( | ) |
Standard_Integer math_GlobOptMin::NbExtrema | ( | ) |
Return count of global extremas.
void math_GlobOptMin::Perform | ( | const Standard_Boolean | isFindSingleSolution = Standard_False | ) |
isFindSingleSolution | - defines whether to find single solution or all solutions. |
void math_GlobOptMin::Points | ( | const Standard_Integer | theIndex, |
math_Vector & | theSol | ||
) |
Return solution theIndex, 1 <= theIndex <= NbExtrema.
void math_GlobOptMin::SetGlobalParams | ( | math_MultipleVarFunction * | theFunc, |
const math_Vector & | theLowerBorder, | ||
const math_Vector & | theUpperBorder, | ||
const Standard_Real | theC = 9 , |
||
const Standard_Real | theDiscretizationTol = 1.0e-2 , |
||
const Standard_Real | theSameTol = 1.0e-7 |
||
) |
void math_GlobOptMin::SetLocalParams | ( | const math_Vector & | theLocalA, |
const math_Vector & | theLocalB | ||
) |
void math_GlobOptMin::SetTol | ( | const Standard_Real | theDiscretizationTol, |
const Standard_Real | theSameTol | ||
) |