Open CASCADE Technology
7.3.0
|
An algorithm to determine points at which a BSpline curve should be split in order to obtain arcs of the same continuity. If you require curves with a minimum continuity for your computation, it is useful to know the points between which an arc has a continuity of a given order. The continuity order is given at the construction time. For a BSpline curve, the discontinuities are localized at the knot values. Between two knot values the BSpline is infinitely and continuously differentiable. At a given knot, the continuity is equal to: Degree - Mult, where Degree is the degree of the BSpline curve and Mult is the multiplicity of the knot. It is possible to compute the arcs which correspond to this splitting using the global function SplitBSplineCurve provided by the package GeomConvert. A BSplineCurveKnotSplitting object provides a framework for: More...
#include <GeomConvert_BSplineCurveKnotSplitting.hxx>
Public Member Functions | |
GeomConvert_BSplineCurveKnotSplitting (const Handle< Geom_BSplineCurve > &BasisCurve, const Standard_Integer ContinuityRange) | |
Determines points at which the BSpline curve BasisCurve should be split in order to obtain arcs with a degree of continuity equal to ContinuityRange. These points are knot values of BasisCurve. They are identified by indices in the knots table of BasisCurve. Use the available interrogation functions to access computed values, followed by the global function SplitBSplineCurve (provided by the package GeomConvert) to split the curve. Exceptions Standard_RangeError if ContinuityRange is less than zero. More... | |
Standard_Integer | NbSplits () const |
Returns the number of points at which the analyzed BSpline curve should be split, in order to obtain arcs with the continuity required by this framework. All these points correspond to knot values. Note that the first and last points of the curve, which bound the first and last arcs, are counted among these splitting points. More... | |
void | Splitting (TColStd_Array1OfInteger &SplitValues) const |
Loads the SplitValues table with the split knots values computed in this framework. Each value in the table is an index in the knots table of the BSpline curve analyzed by this algorithm. The values in SplitValues are given in ascending order and comprise the indices of the knots which give the first and last points of the curve. Use two consecutive values from the table as arguments of the global function SplitBSplineCurve (provided by the package GeomConvert) to split the curve. Exceptions Standard_DimensionError if the array SplitValues was not created with the following bounds: More... | |
Standard_Integer | SplitValue (const Standard_Integer Index) const |
Returns the split knot of index Index to the split knots table computed in this framework. The returned value is an index in the knots table of the BSpline curve analyzed by this algorithm. Notes: More... | |
An algorithm to determine points at which a BSpline curve should be split in order to obtain arcs of the same continuity. If you require curves with a minimum continuity for your computation, it is useful to know the points between which an arc has a continuity of a given order. The continuity order is given at the construction time. For a BSpline curve, the discontinuities are localized at the knot values. Between two knot values the BSpline is infinitely and continuously differentiable. At a given knot, the continuity is equal to: Degree - Mult, where Degree is the degree of the BSpline curve and Mult is the multiplicity of the knot. It is possible to compute the arcs which correspond to this splitting using the global function SplitBSplineCurve provided by the package GeomConvert. A BSplineCurveKnotSplitting object provides a framework for:
GeomConvert_BSplineCurveKnotSplitting::GeomConvert_BSplineCurveKnotSplitting | ( | const Handle< Geom_BSplineCurve > & | BasisCurve, |
const Standard_Integer | ContinuityRange | ||
) |
Determines points at which the BSpline curve BasisCurve should be split in order to obtain arcs with a degree of continuity equal to ContinuityRange. These points are knot values of BasisCurve. They are identified by indices in the knots table of BasisCurve. Use the available interrogation functions to access computed values, followed by the global function SplitBSplineCurve (provided by the package GeomConvert) to split the curve. Exceptions Standard_RangeError if ContinuityRange is less than zero.
Standard_Integer GeomConvert_BSplineCurveKnotSplitting::NbSplits | ( | ) | const |
Returns the number of points at which the analyzed BSpline curve should be split, in order to obtain arcs with the continuity required by this framework. All these points correspond to knot values. Note that the first and last points of the curve, which bound the first and last arcs, are counted among these splitting points.
void GeomConvert_BSplineCurveKnotSplitting::Splitting | ( | TColStd_Array1OfInteger & | SplitValues | ) | const |
Loads the SplitValues table with the split knots values computed in this framework. Each value in the table is an index in the knots table of the BSpline curve analyzed by this algorithm. The values in SplitValues are given in ascending order and comprise the indices of the knots which give the first and last points of the curve. Use two consecutive values from the table as arguments of the global function SplitBSplineCurve (provided by the package GeomConvert) to split the curve. Exceptions Standard_DimensionError if the array SplitValues was not created with the following bounds:
Standard_Integer GeomConvert_BSplineCurveKnotSplitting::SplitValue | ( | const Standard_Integer | Index | ) | const |
Returns the split knot of index Index to the split knots table computed in this framework. The returned value is an index in the knots table of the BSpline curve analyzed by this algorithm. Notes: