Open CASCADE Technology  7.4.0
Public Member Functions
Convert_CompPolynomialToPoles Class Reference

Convert a serie of Polynomial N-Dimensional Curves that are have continuity CM to an N-Dimensional Bspline Curve that has continuity CM. (to convert an function (curve) polynomial by span in a BSpline) This class uses the following arguments : NumCurves : the number of Polynomial Curves Continuity: the requested continuity for the n-dimensional Spline Dimension : the dimension of the Spline MaxDegree : maximum allowed degree for each composite polynomial segment. NumCoeffPerCurve : the number of coefficient per segments = degree - 1 Coefficients : the coefficients organized in the following way [1..<myNumPolynomials>][1..myMaxDegree +1][1..myDimension] that is : index [n,d,i] is at slot (n-1) * (myMaxDegree + 1) * myDimension + (d-1) * myDimension + i PolynomialIntervals : nth polynomial represents a polynomial between myPolynomialIntervals->Value(n,0) and myPolynomialIntervals->Value(n,1) TrueIntervals : the nth polynomial has to be mapped linearly to be defined on the following interval : myTrueIntervals->Value(n) and myTrueIntervals->Value(n+1) so that it represent adequatly the function with the required continuity. More...

#include <Convert_CompPolynomialToPoles.hxx>

Public Member Functions

 Convert_CompPolynomialToPoles (const Standard_Integer NumCurves, const Standard_Integer Continuity, const Standard_Integer Dimension, const Standard_Integer MaxDegree, const Handle< TColStd_HArray1OfInteger > &NumCoeffPerCurve, const Handle< TColStd_HArray1OfReal > &Coefficients, const Handle< TColStd_HArray2OfReal > &PolynomialIntervals, const Handle< TColStd_HArray1OfReal > &TrueIntervals)
 Warning! Continuity can be at MOST the maximum degree of the polynomial functions TrueIntervals : this is the true parameterisation for the composite curve that is : the curve has myContinuity if the nth curve is parameterized between myTrueIntervals(n) and myTrueIntervals(n+1) More...
 
 Convert_CompPolynomialToPoles (const Standard_Integer NumCurves, const Standard_Integer Dimension, const Standard_Integer MaxDegree, const TColStd_Array1OfInteger &Continuity, const TColStd_Array1OfInteger &NumCoeffPerCurve, const TColStd_Array1OfReal &Coefficients, const TColStd_Array2OfReal &PolynomialIntervals, const TColStd_Array1OfReal &TrueIntervals)
 To Convert sevral span with different order of Continuity. Warning: The Length of Continuity have to be NumCurves-1. More...
 
 Convert_CompPolynomialToPoles (const Standard_Integer Dimension, const Standard_Integer MaxDegree, const Standard_Integer Degree, const TColStd_Array1OfReal &Coefficients, const TColStd_Array1OfReal &PolynomialIntervals, const TColStd_Array1OfReal &TrueIntervals)
 To Convert only one span. More...
 
Standard_Integer NbPoles () const
 number of poles of the n-dimensional BSpline More...
 
void Poles (Handle< TColStd_HArray2OfReal > &Poles) const
 returns the poles of the n-dimensional BSpline in the following format : [1..NumPoles][1..Dimension] More...
 
Standard_Integer Degree () const
 
Standard_Integer NbKnots () const
 Degree of the n-dimensional Bspline. More...
 
void Knots (Handle< TColStd_HArray1OfReal > &K) const
 Knots of the n-dimensional Bspline. More...
 
void Multiplicities (Handle< TColStd_HArray1OfInteger > &M) const
 Multiplicities of the knots in the BSpline. More...
 
Standard_Boolean IsDone () const
 

Detailed Description

Convert a serie of Polynomial N-Dimensional Curves that are have continuity CM to an N-Dimensional Bspline Curve that has continuity CM. (to convert an function (curve) polynomial by span in a BSpline) This class uses the following arguments : NumCurves : the number of Polynomial Curves Continuity: the requested continuity for the n-dimensional Spline Dimension : the dimension of the Spline MaxDegree : maximum allowed degree for each composite polynomial segment. NumCoeffPerCurve : the number of coefficient per segments = degree - 1 Coefficients : the coefficients organized in the following way [1..<myNumPolynomials>][1..myMaxDegree +1][1..myDimension] that is : index [n,d,i] is at slot (n-1) * (myMaxDegree + 1) * myDimension + (d-1) * myDimension + i PolynomialIntervals : nth polynomial represents a polynomial between myPolynomialIntervals->Value(n,0) and myPolynomialIntervals->Value(n,1) TrueIntervals : the nth polynomial has to be mapped linearly to be defined on the following interval : myTrueIntervals->Value(n) and myTrueIntervals->Value(n+1) so that it represent adequatly the function with the required continuity.

Constructor & Destructor Documentation

◆ Convert_CompPolynomialToPoles() [1/3]

Convert_CompPolynomialToPoles::Convert_CompPolynomialToPoles ( const Standard_Integer  NumCurves,
const Standard_Integer  Continuity,
const Standard_Integer  Dimension,
const Standard_Integer  MaxDegree,
const Handle< TColStd_HArray1OfInteger > &  NumCoeffPerCurve,
const Handle< TColStd_HArray1OfReal > &  Coefficients,
const Handle< TColStd_HArray2OfReal > &  PolynomialIntervals,
const Handle< TColStd_HArray1OfReal > &  TrueIntervals 
)

Warning! Continuity can be at MOST the maximum degree of the polynomial functions TrueIntervals : this is the true parameterisation for the composite curve that is : the curve has myContinuity if the nth curve is parameterized between myTrueIntervals(n) and myTrueIntervals(n+1)

Coefficients have to be the implicit "c form": Coefficients[Numcurves][MaxDegree+1][Dimension]

Warning! The NumberOfCoefficient of an polynome is his degree + 1 Example: To convert the linear function f(x) = 2*x + 1 on the domaine [2,5] to BSpline with the bound [-1,1]. Arguments are : NumCurves = 1; Continuity = 1; Dimension = 1; MaxDegree = 1; NumCoeffPerCurve [1] = {2}; Coefficients[2] = {1, 2}; PolynomialIntervals[1,2] = {{2,5}} TrueIntervals[2] = {-1, 1}

◆ Convert_CompPolynomialToPoles() [2/3]

Convert_CompPolynomialToPoles::Convert_CompPolynomialToPoles ( const Standard_Integer  NumCurves,
const Standard_Integer  Dimension,
const Standard_Integer  MaxDegree,
const TColStd_Array1OfInteger Continuity,
const TColStd_Array1OfInteger NumCoeffPerCurve,
const TColStd_Array1OfReal Coefficients,
const TColStd_Array2OfReal PolynomialIntervals,
const TColStd_Array1OfReal TrueIntervals 
)

To Convert sevral span with different order of Continuity. Warning: The Length of Continuity have to be NumCurves-1.

◆ Convert_CompPolynomialToPoles() [3/3]

Convert_CompPolynomialToPoles::Convert_CompPolynomialToPoles ( const Standard_Integer  Dimension,
const Standard_Integer  MaxDegree,
const Standard_Integer  Degree,
const TColStd_Array1OfReal Coefficients,
const TColStd_Array1OfReal PolynomialIntervals,
const TColStd_Array1OfReal TrueIntervals 
)

To Convert only one span.

Member Function Documentation

◆ Degree()

Standard_Integer Convert_CompPolynomialToPoles::Degree ( ) const

◆ IsDone()

Standard_Boolean Convert_CompPolynomialToPoles::IsDone ( ) const

◆ Knots()

void Convert_CompPolynomialToPoles::Knots ( Handle< TColStd_HArray1OfReal > &  K) const

Knots of the n-dimensional Bspline.

◆ Multiplicities()

void Convert_CompPolynomialToPoles::Multiplicities ( Handle< TColStd_HArray1OfInteger > &  M) const

Multiplicities of the knots in the BSpline.

◆ NbKnots()

Standard_Integer Convert_CompPolynomialToPoles::NbKnots ( ) const

Degree of the n-dimensional Bspline.

◆ NbPoles()

Standard_Integer Convert_CompPolynomialToPoles::NbPoles ( ) const

number of poles of the n-dimensional BSpline

◆ Poles()

void Convert_CompPolynomialToPoles::Poles ( Handle< TColStd_HArray2OfReal > &  Poles) const

returns the poles of the n-dimensional BSpline in the following format : [1..NumPoles][1..Dimension]


The documentation for this class was generated from the following file: